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Abstract

In many industrial applications, mechanical structures like heat exchanger tube bundles are subjected to complex

flows causing possible vibrations and damage. Part of fluid forces are coupled with tube motion and the so-called fluid-

elastic forces can affect the structure dynamic behaviour generating possible instabilities and leading to possible short

term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure

response experimental measurements associated with convenient data processes. Owing to recent improvements in

Computational Fluid Dynamics, numerical simulation of flow-induced vibrations is now practicable for industrial

purposes. The present paper is devoted to the numerical identification of fluid-elastic effects affecting tube bundle

motion in presence of fluid at rest and one-phase cross-flows. What is the numerical process? When fluid-elastic effects

are not significant and are restricted to added mass effects, there is no strong coupling between structure and fluid

motions. The structure displacement is not supposed to affect flow patterns. Thus it is possible to solve flow and

structure problems separately by using a fixed nonmoving mesh for the fluid dynamic computation. Power spectral

density and time record of lift and drag forces acting on tube bundles can be computed numerically by using an

unsteady fluid computation involving for example a large Eddy simulation. Fluid force spectra or time record can then

be introduced as inlet conditions into the structure code providing the tube dynamic response generated by flow. Such a

computation is not possible in presence of strong flow structure coupling. When fluid-elastic effects cannot be neglected,

in presence of tube bundles subjected to cross-flows for example, a coupling between flow and structure computations is

required. Appropriate numerical methods are investigated in the present work. The purpose is to be able to provide a

numerical estimate of the critical flow velocity for the threshold of fluid-elastic instability of tube bundle without

experimental investigation. The methodology consists in simulating in the same time thermohydraulics and mechanics

problems by using an arbitrary Lagrange Euler (ALE) formulation for the fluid computation. A fully coupled numerical

approach is suggested and applied to the numerical prediction of the vibration frequency of a flexible tube belonging to

a fixed tube bundle in fluid at rest or in flow. Numerical results turn out to be consistent with available experimental

data obtained in the same configuration. This work is a first step in the definition of a computational process for the full

numerical prediction of tube bundle vibrations induced by flows.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In many industrial configurations, mechanical structures such as PWR components are subjected to complex flows

causing possible vibrations and damage and as far as nuclear security is concerned, it is necessary to prevent wear
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problems generated by vibration fatigue. In this context, many experiments are carried out at EDF in order to predict

turbulent and fluid-elastic forces responsible for possible flow-induced vibration problems. These forces can sometimes

be directly measured by transducers but with direct approaches it is often difficult to stand between the different

physical mechanisms involved when a distributed external loading is considered. On the contrary, indirect experimental

prediction methods have shown their ability to provide fluid force estimates. Most of them rely on force density

analytical models depending themselves on unknown spectral scaled parameters (Corcos, 1963; Gagnon and Pa.ıdoussis,

1994; Axisa et al., 1990). They are thus not always reliable, especially in the presence of complex turbulent flows. An

advanced indirect approach has also been developed by EDF since about 15 years (Granger and Perotin, 1997a, b). It

relies on structural vibration response measurement. After convenient transfer function calculation and data

processing, the method provides an estimate of fluid excitations acting on dynamic structures. A modal modelling of the

mechanical system is used and a spatial orthonormal decomposition of force fields is combined with a regularization

process ensuring the closure system. This approach is efficient and it has been applied to the prediction of turbulent and

fluid-elastic forces acting on tubes (Granger and Perotin, 1997a, b) and on PWR components like rod cluster control

assemblies (Longatte et al., 2000) and heat exchanger tube bundles (Adobes et al., 2001). However, this technique often

involves high costs because it relies on modelling fitted with experimental data deduced from measurements carried out

on specific devices. As far as tube bundle vibrations in cross-flows are concerned, it is also possible to use a semi-

analytical quasi-unsteady modelling fitted with experimental, numerical or analytical data and providing tube response

expressed in terms of drag and lift force coefficients (Granger and Pa.ıdoussis, 1995; Granger and Gay, 1996). However,

this modelling does not describe all physical phenomena involved by flow-induced vibrations.
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Nomenclature

Cf added damping in flow per unit length (N s/m2)

Cs structural damping per unit length (N s/m2)

Cn added damping in still water per unit length (N s/m2)

D fluid deformation tensor (s�1)

De tube outer diameter (m)

Do tube outer diameter in test facility (m)

Di tube inner diameter (m)

f tube frequency (Hz)

fo forced tube frequency (Hz)

ff fluid-elastic force per unit length (N/m)

ft turbulent force per unit length (N/m)

Ks structural stiffness per unit length (N/m2)

Kf added stiffness in flow per unit length (N/m2)

I identity tensor (dimensionless)

L tube length (m)

Ma added mass per unit length (kg/m)

Ms structural mass per unit length (kg/m)

P pitch in square tube bundle (m)

R Reynolds stress tensor (Nm/kg)

St Stokes number (dimensionless)

x tube displacement (m)

xo forced tube displacement (m)

U pitch flow velocity (m/s)

xs tube damping ratio in still air (%)

xe tube damping ratio in still water (%)

xf tube damping ratio in flow (%)

sf fluid stress tensor (N/m2)

ss structure stress tensor (N/m2)

o ‘‘in flow’’ circular frequency o ¼ 2pf (rad/s)

od forced frequency in still water (rad/s)

ow circular frequency in still water (rad/s)

os circular frequency in still air (rad/s)
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In order to reduce experiments and to be able to study many configurations involving complex flow-induced

vibration problems, numerical methods are also considered. Owing to recent developments incorporated into

Computational Fluid Dynamic (CFD) codes, numerical simulation of flow structure coupling is investigated. There are

three cases to be considered, as follows.

(i) In presence of fluid at rest, without flow, mass and damping terms added by fluid can be identified numerically by

using a moving mesh formulation for the fluid computation. An Arbitrary Lagrange Euler (ALE) formulation is

required (Souli et al., 1999; Souli, 2000, 2001; Souli and Zolesio, 2001) and structure motion is introduced in the fluid

calculation as a moving boundary conditions.

(ii) In presence of turbulent flows, when turbulent forces are the most significant and fluid-elastic effects are reduced

to added mass and damping effects, structural motion effects acting on turbulent flow patterns can be neglected. It is

then possible to perform thermohydraulics and mechanics calculations separately (Benhamadouche and Laurence,

2002). Turbulent force spectrum and time record can be simulated by using large Eddy simulation (LES) and

introduced as inlet conditions into the mechanical calculation providing the structure vibration response. LES has

already been applied to the numerical prediction of turbulent loading acting on tubes subjected to turbulent mainly

axial flows without confinement and numerical results turned out to be in good agreement with available analytical or

experimental data (Moreno et al., 2000; Longatte et al., 2001).

(iii) Finally, in presence of flow with high fluid-elastic effects, it is necessary to use a specific numerical method. The

configuration we are interested in is a flexible tube moving in a fixed tube bundle submitted to cross-flows (Fig. 1). The

methodology consists in simulating in the same time thermohydraulics and mechanics problems by using an ALE

formulation (Bendjeddou et al., 2002; Longatte et al., 2002). The purpose is to take into account the coupling between

flow and structural motions. The fluid computational domain is distorted at each time step of the process to account for

tube motion and associated strains and conversely fluid forces acting on structure walls are used to compute wall

displacements.

The second configuration is not investigated here (Longatte et al., 2001). The present work is devoted to the study of

the first and the third cases, i.e. to the identification of fluid-elastic parameters of tubes in fluid at rest and in cross-flows.

The main objectives and methods are specified in the first section. The second part is devoted to the presentation of

ALE formulations and of their application to the prediction of fluid-elastic parameters of tubes in fluid at rest. In the

third part, the main flow-structure coupling processes are discussed and some results related to tube flow-induced

vibrations are presented. According to the comparisons between numerical results and available experimental data, it is

demonstrated that a full numerical simulation of tube bundle vibrations in cross-flows is now reachable.

2. Objectives

2.1. Physical problem

In nuclear power plants heat exchanger tube bundles carrying primary fluid are subjected to cross-flows of secondary

fluid. External fluid forces may generate high magnitude vibrations of tubular structures causing possible dramatic

damages in terms of nuclear safety. Vibrations result from four kinds of fluctuations (Pettigrew and Taylor, 2002a, b;

ARTICLE IN PRESS

Tube bundle

Flow

Fig. 1. Lift and drag force effects on a flexible tube belonging to a fixed tube bundle in cross-flow.
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Chen, 1987; Price and Pa.ıdoussis, 1989): (i) random fluctuations generated by turbulence in fluid at large Reynolds

numbers; (ii) fluctuations induced by structure-flow motion coupling due to fluid-elastic effects; (iii) resonance with flow

periodicity due to vortex shedding; and (iv) possible acoustic excitation.

Fluid-elastic forces and resonance with flow periodicity resulting from this coupling can affect the structural

dynamical behaviour, causing possible instabilities and leading to possible short term failures through high magnitude

vibrations. For industrial concerns, it is necessary to be able to predict these fluid-elastic forces and their effects on tube

bundle dynamic stability. In the present work we focus our attention on this kind of fluid forces.

Flow-structure interaction induces energy exchange between flow and structural motions and, up to a critical flow

velocity, the flow-structure system may become unstable and high magnitude structure displacements occur. Fig. 2

features a typical response showing tube motion amplitude and cross-flow velocity.

Fluid-elastic instability development has been widely studied experimentally and many experiments were carried out

to identify critical flow velocity in many different configurations. Experimental data resulting from these studies gave

rise to available reference instability maps providing critical velocity thresholds in terms of tube bundle characteristic

parameters. The purpose of the present work is to build a numerical method to retrieve numerically the laws between

tube bundle parameters and critical flow velocity.

2.2. Fluid-elastic parameters definition

We are interested in the study of vibrations of a flexible tube belonging to a regular fixed tube bundle subjected to a

fluid coupling, with or without flow. This configuration is defined by known parameters describing the system geometry

and hydraulics (Adobes et al., 2001). For each configuration to be studied, for a given parameter gather, fluid-elastic

forces may affect tube motion. As we will see below, fluid-elastic effects can be expressed and measured in terms of

fluid-elastic parameters. These coefficients were previously identified experimentally in many different configurations

(Chen, 1986; Price and Pa.ıdoussis, 1986). The purpose here is to show how to estimate numerically these fluid-elastic

parameters.

Geometric parameters characterizing a regular tube bundle are the following: tube external and internal diameters

D ¼ De and Di; tube gap P; tube row angle y; and tube bundle length L: From a mechanical point of view, the flexible

tube motion is characterized by: tube mass Ms; tube stiffness Ks; tube damping Cs; and mass of the tube internal fluid

Mi: In presence of one vibration mode, which may be a double one, and is denoted s; the equation of motion of the tube

without fluid can be written as follows:

Ms .x þ Cs ’x þ Ksx ¼ 0; ð1Þ

or equivalently,

.x þ 2xsos ’x þ o2
s x ¼ 0; ð2Þ

ARTICLE IN PRESS

Flow velocity (m/s)

Displacement magnitude (m)
Damping(%)

Critical
velocity

STABLE
SYSTEM

UNSTABLE
SYSTEM

  0

Fig. 2. Critical flow velocity generating structure instability development.
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where os and xs designate pulsation and damping coefficients of the tube alone defined by

Ks ¼ Mso2
s ð3Þ

and

Cs ¼ 2Msosxs: ð4Þ

Concerning the hydraulics parameters, the flow is supposed to cross-perpendicularly the tube bundle and the axial

component is zero. The flow is totally defined by its Reynolds number,

Re ¼
rDU

m
;

where U ¼ Ugap ¼ ½P=ðP � DÞ�UN designates the gap velocity, UN the inlet flow velocity before crossing the tube

bundle and m the fluid dynamic viscosity. Concerning the structural motion in the fluid at rest, the apparent mode mass

and damping are affected by added mass effects (represented by Ma), by internal fluid mass effects (represented by Mi)

and by fluid viscosity (represented by Cn) . The equation of motion becomes

ðMs þ Ma þ MiÞ .x þ ðCs þ CnÞ ’x þ Ksx ¼ 0; ð5Þ

or

.x þ 2xeoe ’x þ o2
ex ¼ 0; ð6Þ

where oe and xe designate the pulsation and damping coefficients of the tube in fluid at rest. Then one can use the

following identification:

Ks ¼ Mso2
s ¼ ðMs þ Ma þ MiÞo2

e :

This yields

Ma ¼ Ms
o2

s

o2
e

� 1

� �
� Mi; ð7Þ

Cn ¼ 2ðMs þ Ma þ MiÞoexe � Cs: ð8Þ

If one knows the structural parameters in air, mass and damping terms added by the fluid are totally expressed in

terms of tube frequency and damping in fluid at rest.

In presence of flow, stiffness and damping terms are affected as follows:

ðMs þ Ma þ MiÞ .x þ ðCs þ Cf þ CnÞ ’x þ ðKs þ Kf Þx ¼ Ft; ð9Þ

with Ft designating fluid forces independent on structure motion. Equivalently one gets

.x þ 2xf of ’x þ o2
f x ¼ 0; ð10Þ

and after identification

ðKs þ Kf Þ ¼ ðMs þ Ma þ MiÞo2
f ;

ðCs þ Cf þ CnÞ ¼ 2zf of ðMs þ Ma þ MiÞ:

Finally, the stiffness and damping terms added by flow are given by

Kf ¼ Ms þ Ma þ Mið Þo2
f � Mso2

s ;

Cf þ Cn ¼ 2of xf ðMs þ Mi þ MaÞ � 2Msosxs:

They can be expressed in terms of tube frequency and damping in air and in flow as follows:

Kf ¼ Mso2
s

o2
f

o2
e

� 1

 !
; ð11Þ

Cf þ Cn ¼ 2Ms of xf

o2
s

o2
e

� osxs

� �
: ð12Þ

From a practical point of view, the critical flow velocity is reached when a structure dynamic instability develops.

That is the reason why it is important to be able to control these parameters. The fluid-elastic parameters Ma; Cf ; Cn

and Kf can be identified experimentally after measurement of tube frequency and damping in air, in fluid at rest and in
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flow. The purpose of the present work is to introduce a method for the numerical evaluation of these parameters. This

requires specific techniques (i) to perform the fluid computation, (ii) to perform the structural calculation, (iii) and

finally to make the data-exchange possible between the two calculations by using a convenient moving boundary

condition or an appropriate code coupling process. The computational process is described below.

2.3. Computational process

In continuum mechanics one can describe fluid motion with two classical formulations: (a) An Eulerian formulation:

one focuses as his attention on a particular volume in space. This volume is fixed with respect to a laboratory frame, and

one consider the fluid as it passes through the fixed volume. The fluid is continuously renewed inside the domain and a

convective term is introduced in the basic equations of motion to express the material time derivative in the reference

configuration; (b) A Lagrangian formulation: one identifies and follows a particular region of fluid. The volume of fluid

changes in shape while the total mass remains constant. The computational domain mesh moves with the particle flow

velocity and this may lead to an element entanglement. This formulation is not convenient in presence of high

magnitude motions.

For problems involving moving wall boundaries, it is necessary to have a middle formulation following the boundary

motion and preserving the element shape in the same time. An ALE formulation has been introduced to ensure these

capabilities. Finite element ALE formulation for incompressible viscous flows has been introduced by Hughes et al.

(1981), Liu and Huerta (1988), Belyschko et al. (1982), and the finite difference formulation by Noh (1964) and Hirt

et al. (1974). The purpose of the ALE algorithm is to enable the computational mesh to remain regular even in presence

of high magnitude structure displacements (Benson, 1989).

In the present work, an ALE formulation is used to study numerically the vibrations of a tube in fluid at rest and a

tube in cross-flow. From a numerical point of view there are two cases to be considered:

(i) the tube motion can be introduced as a moving boundary condition and the fluid problem is solved by using an

ALE formulation involving a time-dependent computational domain; or

(ii) a flow-structure code coupling is required to account for interactions between fluid and structure problems. At

each time step, the fluid problem is solved on the reactualized computational domain and fluid forces acting on the

flexible tube are estimated. These forces are then introduced as inlet conditions in the right-hand side of mechanical

equation (1) providing tube displacement and velocity, the tube velocity is used to deform the computational mesh and

to estimate the new problem geometry at each iteration.

Both cases are considered below. In each case, numerical methods are described and results are discussed. Finally,

one gets a full computational process, making it possible to identify numerically all fluid-elastic parameters

characterizing tube bundle vibrations in cross-flows.

3. Numerical methods

3.1. ALE formulation

The ALE formulation was previously used to solve defence problem and nowadays its application was extended to

free surface problems, high velocity impact, offshore structures, multi-physics problems. It has also medical

applications like modelling of blood vessel deformation. There are two ways to solve ALE equations: the first one which

is used here corresponds of an Eulerian viewpoint, the fully coupled equations are solved in one step; this approach can

only handle with one-phase flows; the second method described by Souli et al. (1999, 2000) is a split method: it uses two

steps to solve ALE equations: (i) a Lagrangian step in which the mesh moves with material velocity, and (ii) an

advection step where the mesh moves from its material position to its arbitrary position. This method is better to model

two-phase flows for explosion modelling for instance.

Here the ALE method is investigated to evaluate numerically the fluid-elastic parameters of a flexible tube in tube

bundle in fluid at rest or in flow. In the framework of Arbitrary Lagrangian Eulerian formulations the fluid dynamic

problem is solved as follows. One defines three domains in space and associated mappings from one domain to another

(Fig. 3). The first one is called the material domain Om and follows the fluid particle motion X (Lagrangian

formulation). The second domain called spatial domain Os is fixed and occupies fixed positions in space x (Eulerian

formulation). It is convenient to rely the Eulerian and Lagrangian space reference coordinates, respectively, x and X as

follows:

x ¼ xðX ; tÞ;
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qx

qt

����
X

¼ vðX ; tÞ ¼ vðx; tÞ; ð13Þ

with v the material velocity. Moreover, the material time derivative of a physical property f is given by

qf
qt

¼
qfðX ; tÞ

qt

����
X

¼
qfðx; tÞ

qt

����
x

þ
qfðx; tÞ
qxi

����
t

viðxi; tÞ: ð14Þ

Finally, a third domain is introduced, called the arbitrary domain Oa; with an arbitrary motion different from the

material domain motion. In the fixed spatial domain Os; the arbitrary domain may be described by coordinates x
expressed as follows:

x ¼ xðx; tÞ; ð15Þ

@x

@t

����
x
¼ wðx; tÞ ¼ wðx; tÞ;

with the following time derivative expression:

qfðx; tÞ
qt

����
x
¼

qfðx; tÞ
qt

����
x

þ
qfðx; tÞ
qxi

����
t

wiðxi; tÞ: ð16Þ

In presence of structural wall motion, it is then useful to choose the arbitrary domain Oa according to the moving

structure boundaries. In this way, x and o designate location and velocity of the domain Oa: Thus, the governing

equations in Oa are deduced from the ALE formulation. If one assumes the fluid is incompressible, the mass,

momentum and energy conservation equations are formulated as follows:

divxðvÞ ¼ 0; ð17Þ

r
qv

qt

����
x
þðv � wÞ gradxðvÞ

( )
¼ � gradxðpÞ þ divxðm gradxðvÞÞ � rdivxðRÞ;

r
qRij

qt

����
x
þðv � wÞ gradxðRijÞ

( )
¼ � Pij þ rFij � dij � reij ;

r
qe
qt

����
x
þðv � wÞ gradxðeÞ

( )
¼ rCe1

e
k

P � rCe2
e2

k
þ divxðBðgradxðeÞÞ:

ARTICLE IN PRESS

x

X

Eulerian
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(no velocity)

Lagrangian
reference domain
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Ωm
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Ω

ξ

a

Fig. 3. Representation of Eulerian, Lagrangian and arbitrary reference domains Os; Om and Oa whose velocities are, respectively 0, v

and w:

E. Longatte et al. / Journal of Fluids and Structures 18 (2003) 513–528 519



Here R describes the Reynolds tensor defined by

Rij ¼ v
0

iv
0

j :

In the framework of turbulence statistical approaches, each physical field f can be split into two components: a mean

part %f and a fluctuating part f0; i.e.,

f ¼ %fþ f0:

In order to solve this problem it is necessary to introduce the mapping from one domain to the others. The relation

between Eulerian x and Arbitrary Lagrangian x coordinates is ensured by

J ¼ Jðx; tÞ ¼
qxi

qxj

����
���� with J ¼ Id due to the first-order discretization:

Finally, all fields are expressed in terms of J in Oa and at each time step the solution is projected in the new spatial

domain Os: The point is that it is necessary to compute the velocity w or the displacement x of the arbitrary domain. A

first-order approximation consists in relying velocity and displacement by

xnþ1
j ¼ xn

j þ wn
j Dt;

with Dt the time step, xn
j and xnþ1

j the displacement of Oa at time steps n and n+1, and wn
j the velocity at time step n:

In order to compute displacement, the domain Oa is represented as a continuum domain. The difficulty in the ALE

formulation is to choose an appropriate arbitrary velocity in order to avoid element entanglement. There are many

algorithms to get this velocity (Souli et al., 1999; Soli, 2000). In the general case, the mesh is considered as an elastic

body and its distortion is solution of a classical ‘‘mechanical problem’’. A stress tensor is defined for the mesh and this

tensor can be a linear or nonlinear function of displacement or velocity.

In this computation the mesh domain corresponds to an incompressible fluid, it has thus a constant volume

and the stress tensor is chosen as a linear function of velocity. For instance one can assume that the mesh is the most

distorted near moving boundaries and the distortion propagates through the full domain, falling to zero far from the
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Fig. 4. Computational process for flow and structure motion coupling.
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boundaries. This process can be described by a classical diffusion equation for w or x in Oa:

divðl grad wÞ ¼ 0 ð18Þ

associated with convenient boundary conditions as displacements are known on moving and nonmoving arbitrary

domain boundaries. l designates a specific viscosity to be defined. In the present work one puts l ¼ 1 far from the

moving boundary and l ¼ 106 near the tube to keep the mesh distortion homogeneous near moving walls.

Moreover, the fluid dynamic code used in the present work relies on a finite volume formulation with nonstructured

meshes. Hence physical mean fields are computed on element volumes and normal gradients are estimated on each

volume boundary. In the case of a nonstructured mesh, gradients may be rebuilt. Here meshes are cell-centred and fields

are explicitly expressed in volume centres and in face centres. Finally, a semi-implicit method for pressure linked

equations (SIMPLE algorithm) is used and one solves a linear system by using an iterative method, like the

preconditioned conjugate gradient for pressure and Jacobi or Gauss–Seidel method for velocity. The mechanical

equation is solved by using a second order centred scheme or a Newmark scheme. The mesh velocity w is also cell-

centred and the velocity of each node is explained as a simple average of velocities cells including this node.

3.2. Fluid force modelling

The structure response is directly generated by near-wall fluid forces. At each time step of the fluid calculation, lift

and drag forces acting on the flexible tube and responsible for its motion are estimated. These forces are expressed in

terms of the stress tensor s by

~FF ¼ ~TT S; ð19Þ

where S designates the wall surface and ~TT is defined by

~TT ¼ s 	~nn; ð20Þ

with ~nn the unitary normal vector of the structure wall. According to the Stokes approximation, the stress tensor

expression is given by

s ¼ � pI þ 2mD for laminar flows;
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Fig. 5. Experimental set-up section: in-line tube bundle including 7
 9 fixed tubes except the middle tube that is moving in presence of

cross-flow.

Spring

Flexible tube

Fig. 6. Supporting process of the middle flexible moving tube.
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s ¼ � pI þ 2mD � rR with a Reynolds stress-model for turbulent flows:

The vortex shedding frequency is characterized by the Strouhal number: St ¼ fD=U ; with f the lift force frequency.

Vortex shedding is a well-known phenomenon for a single tube in cross-flow but it is much more complicated for tube

bundle and in this case the determination of the Strouhal number is difficult and depends on Reynolds number and tube

confinement.

3.3. Coupling process

To account for fluid or flow structure coupling it may be necessary to use a code coupling to simulate both physical

problems in the same time. The full computational process may be described as follows (Fig. 4). It relies on an ALE

formulation for the fluid computation. At each step n of the fluid calculation, Navier–Stokes equations are solved in the

fluid computational domain On and the system is modified to take into account a mesh velocity in the momentum

conservation equation for the convective term. Then the new geometry and the new solution are calculated in domain

Onþ1: Near-wall forces Fnþ1 acting on the moving tube are deduced from stress tensor at step n þ 1: These forces are

introduced in the right-hand side of tube motion equations (1). According to Eq. (9), they can be identified to added

flow effects as follows:

Ms .x þ Cs ’x þ Ksx ¼ F ¼ � ðMa þ MiÞ .x � ðCf þ CnÞ ’x � Kf x: ð21Þ

The mechanical calculation provides displacement x describing tube motion. Tube node velocity is then deduced

from near-wall node displacement and it is introduced as inlet conditions on mesh velocity. Finally, the mesh velocity

wnþ1 is computed in the full domain Onþ1 at step n þ 1 by solving the mesh diffusion equation.

In this way, one takes into account both fluid effects on tube displacements and conversely tube motion effects on

fluid patterns. The previously mentioned method relies on a first-order explicit staggered coupling scheme. The main

disadvantage of this approach is that the energy conservation equation for the full system is not satisfied because

structure or fluid energy is numerically dissipated or created at the fluid–structure boundary.

To avoid this unwanted property another method is also considered. It consists in using other kinds of staggered

synchronous or asynchronous schemes minimizing errors on numerical energy dissipation (Piperno and Farhat, 2001).

It is also possible to use implicit code coupling process introducing sub-cycling until convergence of fluid calculation at

each time step (Hermann and Steindorf, 1999).

4. Application

4.1. Test case

The previously mentioned numerical methods were used to build a complete numerical tool devoted to the prediction

of tube vibrations in fluid at rest and in cross-flows. Numerical simulations were carried out on a specific test case

corresponding to an experimental device (Granger et al., 1993). In this configuration many experimental data are

available providing tube vibration frequency, damping ratio and r.m.s. vibration in terms of gap velocity. The

ARTICLE IN PRESS

Table 1

Flexible tube characteristic parameters

Tube modal mass Ms (kg) 0.223

Internal fluid modal mass Mi (kg) 0.061

Tube length L (m) 0.250

Tube external diameter De (m) 0.022

Tube modal stiffness Ks (N/m) 13185

Tube modal damping xs (%) 0.13

Table 2

Flexible tube characteristic parameters

Tube vibration frequency fs (Hz) 38.7
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test-section is described in Fig. 5. An in-line tube bundle includes 7
 9 fixed tubes, except the middle tube

that is moving under the action of cross-flow. In the cross-direction the bundle is limited by two parallel

walls simulating symmetry conditions. The flexible tube support is depicted in Fig. 6. The mockup was so built

that the tube can only move in the cross-direction without any deformation. The tube displacement is called x and it is

governed by a mechanism whose characteristic parameters are an apparent spring stiffness Ks and an apparent damping

ratio xs:
The main tube mechanical and geometrical parameters are reported in Table 1. According to these data, the

theoretical tube motion frequency without fluid is deduced from Eq. (3), (Table 2).

4.2. Computation of tube vibration frequency in still water

The purpose is to evaluate numerically fluid-elastic parameters of a flexible tube in fluid at rest, i.e. added mass and

damping terms induced by the fluid: Ma and Cn: An ALE formulation is used and there is no fluid–structure coupling,

as the structure is supposed not to be affected by the fluid and its motion is imposed.
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Inlet

Outlet
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  tube
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Drag
direction

Lift
direction

Fig. 7. Fluid computational domain providing a simplified representation of the experimental set-up depicted in Fig. 5. The tube

bundle is supposed to be infinite. With periodic inlet and outlet conditions, each flexible tube neighbour is fixed and the tube motion is

not expected to affect the other flexible tube motion. Inlet flow rates is introduced to get the convenient gap velocity Ugap: The tube is

expected to move in the drag direction and to oscillate in the lift direction.

Fig. 8. Fluid computational domain mesh section at time step n ¼ 0 in 5-tubes (left) and 9-tubes (right) configurations.
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4.2.1. Fluid computational domain

Numerical simulation of the previous experiment relies on simplified assumptions making the calculation easier and

shorter. The fluid computational domain describing the experimental set-up is represented in Fig. 7. It is restricted to

the smallest tube bundle cell featuring periodicity involving 5 or 9 tubes as shown on Fig. 8, showing also the associated

meshes. The tube bundle is supposed to be infinite in the lift and drag directions. This assumption is checked if one only

considers vibrations of the middle tube in the tube bundle (Fig. 5). The fluid flow is supposed to be two-dimensional

(2-D) and each tube is supposed to have infinite length in the length direction.

4.2.2. Boundary conditions

The computational domain is limited by periodic inlet and outlet conditions on the flow. In this way each near

neighbour of the flexible tube is fixed and interactions between several flexible tubes are neglected. Periodic and free

outlet boundary conditions have been tested. To model periodic boundary conditions, periodic cells are added to the

real mesh and a term source is defined and introduced in the right-hand side of Navier–Stokes equations to keep a

constant flow rate in case of fluid motion. One uses a second-order Newton method to compute the term source

(Benhamadouche and Laurence, 2002).

There is no fluid flow, so turbulence effects and added stiffness decrease to null if displacements remain small. Here

the fluid motion is only due to structural displacements and one keeps small tube displacements in order to keep laminar

flow and neglect the turbulence forces.

Furthermore, the structural motion is supposed to be linear and a modal base is defined to compute displacement. To

model correctly the fluid forces, the boundary condition between fluid and structure must be defined properly and

precisely. Here the continuity of velocity and normal stress tensor at the fluid–structure interface is satisfied. No wall

law is used on the moving boundary.

4.2.3. Identification of tube vibration frequency in fluid at rest

The tube motion is introduced as an imposed harmonic boundary condition solution of the homogeneous structure

problem. For this calculation a periodic tube motion is imposed as fluid and mesh inlet conditions with a fixed

frequency od ¼ 2pfd : At each time step fluid forces acting on the tube are estimated. According to Eq. (5) these forces

are expressed in terms of added mass and viscosity damping terms as follows:

ðMs þ MiÞ .x þ Cs ’x þ Ksx ¼ F ¼ � Ma .x � Cn ’x: ð22Þ
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Table 3

Inlet data for the calculations in fluid at rest : tube imposed harmonic frequency fd (Hz) and tube vibration magnitude xo (m)

Inlet data 9 tubes Inlet data 5 tubes

Harmonic frequency fd (Hz) 29 29

Tube displacement magnitude xo (m) 10�4 10�4

Table 4

Numerical results for the calculation in fluid at rest in terms of force magnitudes Fo (N) and phase j between forces and tube

displacement

Results 9 tubes Results 5 tubes

Force magnitude Fo (N) 2.7
 10�3 1.9
 10�3

Force phase j(rad) 0.06 0.06

Table 5

Comparison between added mass term Ma deduced numerically from Eq. (24) and experimentally from Eq. (7). Good agreement

between tube frequency in the fluid at rest deduced from Eq. (5) numerically and experimentally

Num. 9 tubes Num. 5 tubes Exp.

Added mass Ma (kg) 0.104 0.057 0.116

Frequency in fluid at rest fe (Hz) 29.3 31.3 29.0
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For an harmonic tube motion x ¼ xoe
iod t; fluid forces are also periodic F ¼ Foe

iðod tþjÞ; with j the phase between

fluid forces and tube displacement, and they can be split into two parts:

Foe
ijeiod t ¼ � Ma .x � Cn ’x ¼ ðMao2

dxo � iCnodxoÞeiot:

Then coefficients are given by

Ma ¼
Focosj
o2

dxo

; ð23Þ

Cn ¼ �
Fosinj
odxo

: ð24Þ

Accuracy on damping estimate depends on the Stokes number as the phase j decreases with St. High Stokes number

configurations requires small time steps. Inlet data used for these calculations are reported in Table 3. Fluid force and

tube displacement histories are plotted in Fig. 9. Corresponding force magnitude Fo and phase j are reported in

Table 4. They are compared to experimental data deduced from Eqs. (7) and (8). Results are in good agreement. Added

mass and viscosity damping terms are of the right order. The tube motion frequency and damping ratio in fluid at rest

are finally deduced from Eqs. (5) and (6). Numerical values for Ma and fe are reported in Table 5 and compared to

experimental data. A good agreement is observed. It is interesting to notice that the ALE formulation enables the

estimation of added mass effects. The 9-tubes mesh and periodic condition provide better results for added mass and

added viscosity than the 5-tube configuration. These results tend to show that the assumption of an infinite tube bundle

is not quite validated. Fluid–structure interactions depend on the confinement and in the 5-tube mesh the periodic

boundary conditions are not sufficient to describe the effect of fixed tubes located near the moving tube, which tends to

underestimate fluid–structure coefficients. Damping ratio is expressed in terms of sinj; hence results are very much

dependent on mesh refinement and time step at high Stokes number. Added mass terms are sufficient to estimate

vibration frequency characterizing tube motion in fluid at rest.
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Fig. 10. 3-D mesh of the fluid computational domain at time step n ¼ 1 with a 9-tubes configurations.
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Fig. 9. Fluid force F (heavy line) and tube displacement x (thin line) time history. Estimation of force phase j and force magnitude Fo:
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4.3. Simulation of flow-induced vibrations

In what follows, the purpose is to use the ALE method and a coupling with the mechanical calculation previously

described in order to simulate the tube behaviour in presence of cross-flows. A first estimation of tube frequency in flow

is provided for several gap velocities.

4.3.1. Fluid computation

Inlet flow rates are introduced to get the convenient gap velocity Ugap: The mechanical modelling is made up such

that the tube is expected to deflect in the drag direction and to oscillate in the lift direction, as observed experimentally

(Fig. 9). Three-dimensional (3-D) representation of the computational domain mesh used for the calculation is shown in

Fig. 10. It is near-wall refined in the region near flexible tube where fluid forces must be estimated with accuracy.

4.3.2. Structure computation

For the coupling with the mechanical calculation, a staggered explicit time scheme is applied. At each time step, the

tube motion is reactualized according to the coupling process described in Section 2.3. Tube displacement is solution of

Eq. (21) solved by using appropriate numerical scheme. An Euler explicit scheme, a centred second order scheme and a

Newmark scheme were compared, and the last one provided the best results in terms of numerical damping reduction.

4.3.3. Identification of tube vibration frequency in flow

Numerical results are described below. They are compared to experimental data obtained with the previously

described experimental set-up. Calculations are performed in presence of turbulent flows in order to identify fluid-

elastic parameters. Three-dimensional calculations were carried out for different gap velocity values corresponding to a

Reynolds number range of 1 to 4
 104. Turbulence modelling was introduced to describe the flows. Several models

were tested and, for 3-D calculations, it was shown that a Rij � e modelling provides good results in terms of drag and

lift forces near the tube (Benhamadouche and Laurence, 2002). In the present work a Rij � e modelling involving an

appropriate near-wall treatment or a DNS was used. In practice fluid-elastic forces are supposed to be independent of

turbulence effects and the turbulence model may not affect numerical results in terms of tube vibration frequency.

ARTICLE IN PRESS

Fig. 11. Velocity fields coloured by pressure at two time steps by numerical simulation involving an ALE formulation and a flow

structure coupling process.
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Fig. 12. Tube vibration frequency in flow f (Hz) in terms of gap velocity Ugap (m/s) estimated numerically (black points) and

experimentally by Granger et al. (1993) (white points).
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Fig. 11 provides flow fields simulated by using the full computational process for a given flow velocity. The time

history of tube displacement induced by flow is illustrated. Finally, in-flow tube vibration frequency estimated

numerically and experimentally are reported in Fig. 12 for several gap velocity values. Experimental and numerical

results are compared and the expected trend is retrieved. Tube frequency numerical estimate is reasonable. This tends to

show that the computational process involved in the present work enables the numerical prediction of flexible tube

behaviour in cross-flows.

These first computations provide a first validation of the computational process applied in this article to the

numerical prediction of a flexible tube vibrations in a tube bundle in cross-flow.

Results are reported in Table 6 for several gap velocity values. Finally, one can deduce from previous calculations

fluid-elastic coefficients by using appropriate data processing.

These computations tend to show that a computational process for the numerical prediction of flexible tube

vibrations in cross-flows is now reachable. Required CPU time with VPP5000 is 16/100 000 s per iteration per cell per

processor with about 50 000 iterations without ALE until fluid calculation convergence and 15 000 iterations with ALE.

5. Conclusion

A flow-induced vibration prediction numerical method is presented in this paper. The fluid problem is solved by using

an arbitrary Lagrangian Eulerian (ALE) formulation and a coupling process between fluid and structure computations

is involved in order to account for flow structure coupling and fluid-elastic effects. Finally, the approach is applied to

the numerical prediction of flexible tube bundle vibration frequency in cross-flows. Numerical results are consistent with

experimental predictions and feature the expected tendency.

In the present work, small flow velocities are involved and no instability development is observed. Other simulations

will be performed in order to study the tube bundle behaviour below, near and above the critical flow velocity.

This will require a new validation of turbulence modelling in tube bundles. Further developments will be carried out

in order to improve the coupling process and the flow modelling in presence of moving boundaries.
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